Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cardiovasc Eng Technol ; 15(1): 39-51, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38191807

RESUMO

OBJECTIVE: Easy access bio-signals are useful for alleviating the shortcomings and difficulties associated with cuff-based and invasive blood pressure (BP) measurement techniques. This study proposes a deep learning model, trained using knowledge distillation, based on photoplethysmographic (PPG) and electrocardiogram (ECG) signals to estimate systolic and diastolic blood pressures. METHODS: The estimation model comprises convolutional layers followed by one bidirectional recurrent layer and attention layers. The training approach involves knowledge distillation, where a smaller model (student model) is trained by leveraging information from a larger model (teacher model). RESULTS: The proposed multistage model was evaluated on 1205 subjects from Medical Information Mart for Intensive Care (MIMIC) III database using the Association for the Advancement of Medical Instrumentation (AAMI) and the standards of the British Hypertension Society (BHS). The results revealed that our model performance achieved grade A in estimating both systolic blood pressure (SBP) and diastolic blood pressure (DBP) and met the requirements of the AAMI standard. After training with knowledge distillation (KD), the model achieved a mean absolute error and standard deviation of 2.94 ± 5.61 mmHg for SBP and 2.02 ± 3.60 mmHg for DBP. CONCLUSION: Our results demonstrate the benefits of the knowledge distillation training method in reducing the number of parameters and improving the predictive accuracy of the blood pressure regression model.


Assuntos
Determinação da Pressão Arterial , Hipertensão , Humanos , Pressão Sanguínea/fisiologia , Determinação da Pressão Arterial/métodos , Eletrocardiografia , Sístole
2.
Micromachines (Basel) ; 13(9)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36144060

RESUMO

Non-invasive continuous blood pressure monitoring is of great significance for the preventing, diagnosing, and treating of cardiovascular diseases (CVDs). Studies have demonstrated that photoplethysmogram (PPG) and electrocardiogram (ECG) signals can effectively and continuously predict blood pressure (BP). However, most of the BP estimation models focus on the waveform features of the PPG signal, while the peak value of R-wave in ECG is only used as a time reference, and few references investigated the ECG waveforms. This paper aims to evaluate the influence of three characteristic waveforms in ECG on the improvement of BP estimation. PPG is the primary signal, and five input combinations are formed by adding ECG, P wave, QRS complex, T wave, and none. We employ five common convolutional neural networks (CNN) to validate the consistency of the contribution. Meanwhile, with the visualization of Gradient-weighted class activation mapping (Grad-CAM), we generate the heat maps and further visualize the distribution of CNN's attention to each waveform of PPG and ECG. The heat maps show that networks pay more attention to the QRS complex and T wave. In the comparison results, the QRS complex and T wave have more contribution to minimizing errors than P wave. By separately adding P wave, QRS complex, and T wave, the average MAE of these networks reaches 7.87 mmHg, 6.57 mmHg, and 6.21 mmHg for systolic blood pressure (SBP), and 4.27 mmHg, 3.65 mmHg, and 3.73 mmHg, respectively, for diastolic blood pressure (DBP). The results of the experiment show that QRS complex and T wave deserves more attention and feature extraction like PPG waveform features in the continuous BP estimation.

3.
Physiol Meas ; 43(3)2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35213844

RESUMO

Objective. The arrhythmia identification method based on the U-net has the potential for fast application. The RR-intervals have been proven to improve the performance of single-heartbeat identification methods. However, because both the heartbeats number and location in the input of the U-net are unfixed, the approach based on the U-net cannot use RR-intervals directly. To solve this problem, we proposed a novel method. The proposed method also can identify heartbeats of four classes, including non-ectopic (N), supraventricular ectopic beat (SVEB), ventricular ectopic beat (VEB), and fusion beat (F).Approach. Our method consists of the pre-processing and the two-stage identification framework. In the pre-processing part, we filtered input signals with a band-pass filter and created the auxiliary waveforms by RR-intervals. In the first stage of the framework, we designed a network to handle input signals and auxiliary waveforms. We proposed a masking operation to separate the input signal into two signals according to the result of the network. The first signal contains heartbeats of SVEB and VEB. The second signal includes heartbeats of N and F. The second stage consists of two networks and can further identify the heartbeats of SVEB, VEB, N, and F from these two signals.Main result. We validated our method on the MIT-BIH arrhythmia database with the inter-patient model. For classes N, SVEB, VEB, and F, our approach achieved F1 scores of 98.26, 68.61, 95.99, and 47.75, respectively.Significance. Our method not only can effectively utilize RR intervals but also can identify multiple arrhythmias.


Assuntos
Eletrocardiografia , Complexos Ventriculares Prematuros , Algoritmos , Eletrocardiografia/métodos , Frequência Cardíaca , Humanos , Redes Neurais de Computação , Processamento de Sinais Assistido por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...